The power of high resolution spectroscopy for mixing length calibrations in theoretical stellar evolution models

Advances with SALT

16 November 2018

Dr. Meridith Joyce RSAA Postdoctoral Fellow Australian National University

An ancient battle...

Components of a Stellar Structure and Evolution Code

Mixing Length Theory (MLT) Formalism

$$F_{\text{conv}} = \frac{1}{2} \rho v c_p T \frac{\lambda}{H_P} (\nabla_T - \nabla_{\text{ad}}).$$
$$\alpha_{\text{MLT}} = \frac{\lambda}{H_P} \quad \nabla_T = \left(\frac{d \ln T}{d \ln P}\right).$$

-discrete parcels consist of fluid which is in pressure, but not thermal, equilibrium

-parcels move along vertical trajectories

-distance which parcels can travel before denaturing is the "mixing length"

 $-\alpha_{_{MLT}}$ represents mean free path measured in pressure scale heights, $H_{_P} = d \ln(P) / d \ln(T)$

Problems with mixing length theory

Negative kinetic flux & transport asymmetry

Parcels are nonsense

Not All Stars are the Sun

© Joyce & Chaboyer, 2018

Mixing length is calibrated by minimizing differences between modeled and measured values of the solar radius, luminosity, and surface abundance...

Not All Stars are the Sun

 $\ensuremath{\mathbb{C}}$ Joyce & Chaboyer, 2018

Mixing length is calibrated by minimizing differences between modeled and measured values of the solar radius, luminosity, and surface abundance...

but these features are specific **to a particular star!**

A necessary evil?

A necessary evil?

Interferometry

Asteroseismology

High resolution spectroscopy

High precision photometry

...Oh my!

Common Approach

- Assume a solar mixing length in other stellar models, ad hoc. Choose not to worry about it
- Adopt a "standard" choice for input physics in models. Choose not to worry about it
- Maybe explore how mixing length varies with some input (e.g. metallicity) for solar analogs

- Remove the Sun entirely. Can we directly calibrate the mixing length in conditions that are as non-solar as possible?
- What happens when we change our assumptions about the modeling physics?
- Can we extrapolate the behavior of the mixing length as a function of stellar phase and mass?

Study 1:

Empirically calibrating the mixing length for 6 stars with [Fe/H] < -2.3

PROPERTIES OF FITTED OBJECTS

Name	V	V-I	[Fe/H]	Reference	
HD 140283	7.21	0.0	-2.46	Creevey et al. (2015)	
HIP 46120	10.12	0.752	-2.22	Chaboyer et al. (2017)	
HIP 54639	11.38	0.914	-2.50	Chaboyer et al. (2017)	
HIP 106924	10.36	0.803	-2.23	Chaboyer et al. (2017)	
WOLF 1137	12.01	0.85	-2.53	O'Malley et al. (2017)	
M92	-	-	-2.24	Sarajedini et al. (2007)	

Four physical prescriptions in DSEP:

not taking physics for granted

not the Sun

Solar-Calibrated Mixing Length Values for Various Physical Configurations

Atmosphere	$\eta_{ m D}$	$lpha_{\odot}$	$Y_{ m in}$	Z_0
PHOENIX	1.0	1.9258	0.275	0.019
Grey	1.0	1.8205	0.282	0.019
PHOENIX	0.5	1.8292	0.277	0.0176
PHOENIX	1.5	1.9780	0.282	0.0192

Also!

These six objects span a decent portion of the HR diagram, allowing us to test the hypothesis that the mixing length should vary with stellar phase

Object: HD140283

Phase: Sub-giant

We've attempted to **take metallicity out of the equation** and begun compiling α_{MLT} values as a function of location in the HR diagram

Main Sequence results are inconclusive! Need **more of these candidates**

SUMMARY: BEST-FITTING MIXING LENGTHS TO ALL OBJECTS Default Average Age (Gyr) $\alpha_{\rm MLT}/\alpha_{\odot}$ Object **Evolutionary Phase** Fit Method $\alpha_{\rm MLT}$ $\alpha_{\rm MLT}/\alpha_{\odot}$ HD140283 subgiant 1.30.520.36 - 0.6812.5stellar track M92Red Giant 1.750.910.9113isochrone HIP46120 12isochrone main sequence 1.850.960.92HIP54639 0.70.360.3313main sequence isochrone HIP106924 main sequence 0.5713 isochrone 1.1 0.56Wolf1137 1.951.010.9612isochrone main sequence

The mixing lengths in α Centauri A & B: calibrated classically and asteroseismically

Classical optimization of α Centauri

$$s_{\text{classic}}^{2} = \left[\frac{R_{\text{A,obs}} - R_{\text{A,mod}}}{\sigma_{R_{\text{A,obs}}}}\right]^{2} + \left[\frac{R_{\text{B,obs}} - R_{\text{B,mod}}}{\sigma_{R_{\text{B,obs}}}}\right]^{2} + \left[\frac{L_{\text{A,obs}} - L_{\text{A,mod}}}{\sigma_{L_{\text{A,obs}}}}\right]^{2} + \left[\frac{L_{\text{B,obs}} - L_{\text{B,mod}}}{\sigma_{L_{\text{B,obs}}}}\right]^{2} + \left[\frac{Z/X_{\text{obs}} - Z/X_{\text{mod}}}{\sigma_{Z/X_{\text{obs}}}}\right]^{2}$$
$$s_{\text{binary}}^{2} = \left[\frac{\tau_{A} - \tau_{B}}{5 \,\text{Myr}}\right]^{2} + \left[\frac{Y_{A} - Y_{B}}{0.005}\right]^{2} + \left[\frac{Z_{A} - Z_{B}}{0.0005}\right]^{2}$$

Models must satisfy 9 independent observational constraints and a "common age" criterion

To hone MLT properly in stellar models....

Have four, need more- Brian & Christina on the job!

aCen A is near here (but not low [Fe/H])

HD 140283

M92

One of these too! But is structure too convoluted?

To hone MLT properly in stellar models....

Have four, need more- Brian & Christina on the job!

aCen A is near here (but not low [Fe/H])

HD 140283

M92

One of these too! But is structure too convoluted?

(1) fill in the $\alpha_{_{MLT}}$ HR diagram!

(1) fill in the α_{MLT} HR diagram!

(2) build statistical populations of stars w/ empirically calibrated $\alpha_{_{MLT}}$ values!

(1) fill in the α_{MLT} HR diagram!

(2) build statistical populations of stars w/ empirically calibrated $\alpha_{_{MLT}}$ values!

(3) apply HRS and other high-precision observations to new calibrators!

- (1) fill in the α_{MLT} HR diagram!
- (2) build statistical populations of stars w/ empirically calibrated $\alpha_{_{MLT}}$ values!
- (3) apply HRS and other high-precision observations to new calibrators!
- (4) save the world!

