Summary

Extended Ly α Emission around High z Radio Loud QSOs

Gitika Shukla R. Srianand, Neeraj Gupta IUCAA

Advances with SALT Nov 14-16, 2018 Pretoria Motivation

Data and Analysis

Interesting Targets

Summary

Motivation

Observational Plans

Data and Analysis

Interesting Targets

Summary

Motivation and Aim

- Detection rate of extended Lylpha halos around QSOs
- Characterize the halo properties:
 - Gas extent
 - Radial profile
 - Velocity field
- Origin of Ly α emission
- Connect absorption and emission
- Study correlations between radio properties and optical properties of extended emission

Sample and Observations

- QSO sample selected from MeerKAT Absorption Line Survey (MALS) lead by Neeraj Gupta
- 200 targets observed, 25 targets b/w 2.75< z_{em} <3.35 observed with SALT
- QSOs have radio flux, $f_{1.4GHz}>200 mJ$ and radio luminosity $>7\times10^{40} erg~s^{-1}$
- Observing each target at 2 PAs using longslit at RSS/ SALT
- Radio maps obtained using GMRT

Summary

Histogram of redshift

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Histogram of Radio Luminosity

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Analysis

1. QSO Properties

- Extract the 1D spectra
- Find out the z_{em}, L_{bol}, M_{BH}
- Emission lines
- 2. Characterize the halo properties
 - Find SPSF
 - Create a 2D continuum spectra from the PSF
 - Extract Ly α emission from continuum subtracted spectra
 - Find out the extent and surface brightness of the extension
- 3. Understand the correlation between radio jets and extended emission

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What is SPSF?

Motivation

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Why constructing a well defined global SPSF is challenging?

Motivation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Varies with wavelength
- Problematic due to tilt in the spectrum
- Strong emission and absorption create problems
- Shape often varies and is asymmetric

How to Extract SPSF?

- Use reference star or data to extract SPSF
- PSF should be extracted from redward absorption and emission free wavelength region
- Use a double gaussian fit to the spectrum, for low SNR data
- Use the PSF extracted from emission or absorption free region of the spectrum for high SNR data

Why a double gaussian fit is appropriate?

- SPSF has a broad and narrow components
- Double gaussian fit is required for both narrow and broad profiles

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2D continuum model

- Trace the peak of QSO trace at each wavelength
- Fit the peak with a straight line
- Apply the appropriate shift to the SPSF to match the peak at each wavelength
- χ^2 minimize the amplitude of SPSF w.r.t. data

◆□ > ◆□ > ◆三 > ◆三 > ○ ● ○ ● ●

Motivation	Observational Plans	Data and Analysis	Interesting Targets	Sı
	4	•	fit_unmasked re	gion
	3 -	-	dx_unmasked re	egion

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 - - - の Q ()~

<ロ> (四) (四) (三) (三)

æ

Motivation

Observational Plans

Data and Analysis

Interesting Targets

Summary

Few Interesting Targets

Table: SALT/RSS Log of observations and QSO sample

QSO	Grating ($\Delta\lambda$ km s ⁻¹)	$\stackrel{\lambda}{(\AA)}$	DoO	ET (s)	Seeing (″)
J1312-2026	PG0900	282 44	86-7533	2015-06-19	570.2	2.16
J1142-2633	PG0900	274 46	27-7668	2018-02-27	1200.216	1.46
J1513-2524	PG0900	282 44	86-7533	2017-05-18	1200.207	1.32
J2101-1747	PG0900	296 42	03-7261	2017-05-22	1300.218	2.11
J2154-3826	PG0900	296 40	61-7124	2018-07-04	1200.216	1.49

J1312-2026

- Most Luminous RLQ detected till date at z>5
- Emission is reproduced in 2 set of observations with different setup
- LLS is found at z=5.0
- $L_{1.4GHz} = 1.2 \times 10^{29} \text{ W Hz}^{-1}$
- No radio structure present

Data and Analysis

Interesting Targets

・ロト ・個ト ・モト ・モト

æ

Summary

J1142-2633

PA=100

RADIO IMAGE

- Asymmetric Ly α emission extending upto 35 kpc
- Could be extended upto 150 kpc if reach a lower SB limit for ${\rm SB}(r)\propto r^{-1.8}$ (Arrigoni-Battaia 2018)
- Extended emission seems to correlate with the radio jet direction
- Need NB observations to study the gas distribution

Data and Analysis

Interesting Targets

・ロト ・ 一下・ ・ ヨト ・ ヨト

æ

Summary

J1513-2524

PA=72,350

RADIO IMAGE

- A radio galaxy with no optical counterpart
- Only Ly α , CIV and HeII lines detected without any continuum
- 2 PAs show asymmetric emission
- Extent of emission is pprox 80 kpc
- A double lobed radio quasar with faint nucleus
- A potential candidate for ELAN

Data and Analysis

Interesting Targets

・ロト ・個ト ・モト ・モト

æ

Summary

J2101-1747

PA=112

・ロト ・ 日 ト ・ モ ト ・ モ ト

æ

PA=30

RADIO IMAGE

- Lylpha halo at both PAs
- Two episodes of radio activity
- Strong core-jet structure along South-East
- A weaker jet along North-South
- Emission at PA=112 is anti-correlated with the jet direction

Data and Analysis

Interesting Targets

・ロト ・個ト ・モト ・モト

æ

Summary

J2154-3826

PA=45

・ロト ・個ト ・モト ・モト

z⊋.7936

4700 4750

æ

PA=135

PA=0

- An emission from DLA at PA=45 with 7σ significance
- $\Delta V = -2685 \text{ km s}^{-1}$
- $M_{BH} = 2.4 \times 10^9 M_{\odot}$
- $R_{BLR} = 106$ light days
- $L_{Ly\alpha} = 2.3 \times 10^{42} \text{ erg s}^{-1}, \sigma_v = 712 \text{ km s}^{-1}$

•
$$L_{1450} = 1.29 \times 10^{44} \text{ erg s}^{-1}\text{\AA}^{-1}$$

• $L_{912} = 1.32 \times 10^{31} \text{erg s}^{-1} \text{Hz}^{-1}$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ○□ ● ○○ ○

RADIO IMAGE

マロト 予想 トイヨト 不通 トーヨー のくで

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Some Measurements

Table: Measurements from our analysis

Target	\mathbf{z}_{em}	L_{bol}	$M_{\rm BH}$	$L_{Ly\alpha}$
		(erg s^{-1})	(M _☉)	(erg s^{-1})
J1513-2524	3.1304	$7.5 { imes} 10^{46}$	5.8×10^{8}	6.87×10^{44}
J2154-3826	2.7936	7.90×10 ⁴⁷	2.4×10 ⁹	3.13×10 ⁴³
J1142-2633	3.2405	1.32×10^{47}	1.05×10^{9}	7.48×10^{43}
J2101-1747	2.8103	$1.2{ imes}10^{46}$	9.6×10^{7}	2.66×10^{43}

Table: Targets with extended Ly α emission

Target	SB	$\mathrm{SB}_{\mathrm{lim}}$	S/N
	$(\text{ erg s}^{-1} \text{ cm}^{-2} \text{ arcsec}^{-2})$	$(\text{ erg s}^{-1} \text{ cm}^{-2} \text{ arcsec}^{-2})$	²)
J1513-2524	7.65×10^{-16}	8.40×10^{-18}	90
J2154-3826	2.80×10^{-17}	4.56×10^{-18}	6
J1142-2633	1.70×10^{-16}	1.50×10^{-18}	100
J2101-1747	8.37×10^{-17}	4.14×10^{-18}	20

<□> <圖> < ≧> < ≧> < ≧> < ≧ < つへぐ

Plans for future observations with SALT

- Observed 13 targets at two PAs
- 8 are observed at only one PA
- 4 targets need to be observed at two PAs
- Observing few sources with narrow band imaging

Summary

- All the QSOs seem to host MBH at the centre with mass range $b/w~10^6-10^9 \ensuremath{M_{\odot}}$
- FWHM of the PSF ranges b/w 1.2"-2 ", allows to detect extended emission beyond 15kpc
- 60-70% of QSOs seem to have asymmetric extended emission
- With limiting surface $\approx 10^{-18}$ erg s⁻¹ cm⁻² arcsec⁻², detecting bigger halos extending upto 30-80kpc
- We are possibly witnessing $Ly\alpha$ fluorescence
- There might be a correlation b/w extended emission and HeII emission
- Statistical correlation is important to understand the origin of extended emission