The SAAO Future "An Intelligent Observatory"

SAAO intro SALT + SAAO facilities Steps into the future Strategic science areas

Department: Science and Technology **REPUBLIC OF SOUTH AFRICA**

& technology

science

SALT 1.5 and 2.0

South African Astronomical Observatory – Cape Town

- The premier optical astronomy facility on the African continent
- Part of National Research Foundation
- Founded 1820

Sutherland observing station

400 km from Cape Town Semi-arid Karoo region Research telescopes Support staff and facilities Hosted facilities Dark site, modest seeing

Science & technology Department: Science and Technology REPUBLIC OF SOUTH AFRIC

Sutherland Telescopes

(our own or guest, many with SA access)

imaging, med/high-R spect., high speed modes, MOS, FP, im/spec polarimetry, wide field imaging
Japanese 1.4 m IR imaging / polarimetry
Korean 1.6 m 2° field exoplanet search
German 1.2m planet search & teaching
USA 3x 1m optical robotic
Polish 2x 0.5 m exoplanet search
Russian 2x 0.45 m transient search
0.65 m shadows MeerKAT
USA + International transient search
UK exoplanet search
USA exoplanet search
South African space debris, atmosphere
UK solar telescope
USA 0.5 m near Earth asteroids and transient search
Japanese 1.8 m, wide field NIR imaging; HR spectograph

Pretoria 2018

SAAO Instrument Suite

74-inch telescope

Cassegrain)

POlarimeter)

fed Echelle)

Optical Camera)

SpUpNIC (Spectrograph)

Upgrade Newly Improved

HIPPO (High-speed Photo

SHOC (Sutherland High-speed)

1-m telescope, Lesedi

- SHOC (Suthe Optical Came & science mo
- WiNCam (Wid Camera; Aug.

SAAO Instrument Suite

- SAAO
- 40-inch tele
 - * SHOC (St
 - STE3/STE

SAAO

- 74-inch telescope
 - SpUpNIC (Spec Upgrade Newly Cassegrain)
 - SHOC (Sutherla Optical Camera)
 - HIPPO (High-sp POlarimeter)
 - GIRAFFE (high-resolution fiberfed Echelle)

GIRAFFE (high-resolution fiber-

Pretoria 2018

SAAO

Slides: A.Sickafoose

SAAO Instrument Suite

• 1-m telescope, Lesedi

- SHOC (Suthe Optical Came & science mc
- WiNCam (Wid Camera; Aug
- SAAO
- 40-inch tele
 - * SHOC (S
 - STE3/ST

SAAO

- 74-inch telescope
 - SpUpNIC (Spec Upgrade Newly Cassegrain)
 - SHOC (Sutherla Optical Camera
 - HIPPO (High-sp POlarimeter)
 - GIRAFFE (high-resolution fiberfed Echelle)

SAAO Instrument Suite

- 1-m telescope, Lesedi
 - SHOC (Sutherland High-speed Optical Camera; commissioning & science mountings)
 - WiNCam (Wide-field Nasmyth Camera; Aug. 2018)
 - High-throughput, low-resolution spectrograph (collaboration with Liverpool John Moores Univ.; Aug. 2018)

Slides: A.Sickafoose

SAAO Instrument Suite

- 1-m telescope, Lesedi
 - SHOC (Suthe Optical Came & science mo
 - WiNCam (Wid Camera; Aug.
 - SAAO
 - 40-inch tele
 - * SHOC (St
 - STE3/STE

SAAO

- 74-inch telescope
 - SpUpNIC (Spec Upgrade Newly Cassegrain)
 - SHOC (Sutherla Optical Camera)
 - HIPPO (High-sp POlarimeter)
 - GIRAFFE (high-resolution fiberfed Echelle)

- 40-inch telescope
 - SHOC (Sutherland High-speed Optical Camera)
 - STE3/STE4 (Imaging cameras)
 - WALOP (Wide Area Linear Optical Polarimeter; collaboration with IUCAA, arriving end 2018)

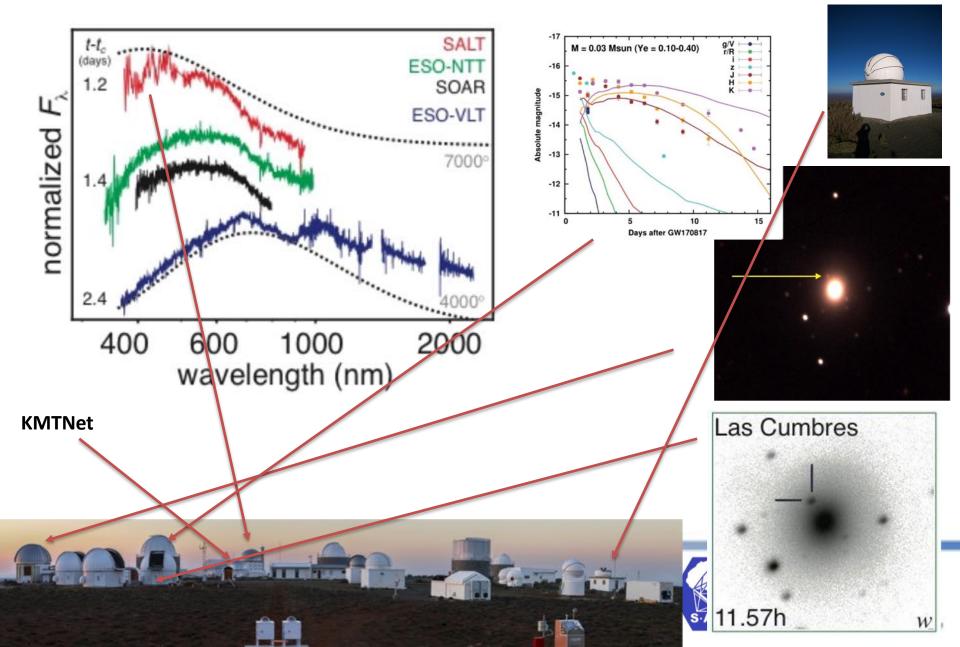
Slides: A.Sickafoose

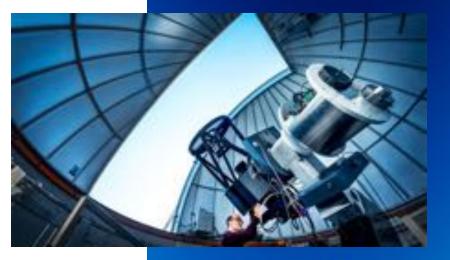
SALT

The largest optical telescope in the Southern Hemisphere – 11-m primary mirror

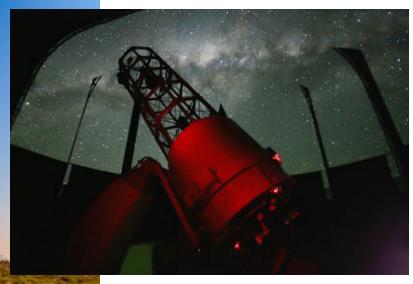
On its 15th Science Semester currently

SALT is working well right now, producing science ~50 papers per year very cost-effectively


TELESCOPES WORKING TOGETHER



Pretoria 2018


Birth of multi-messenger astronomy

Multi-wavelength astronomy

Steps to the Intelligent Observatory

- 1. Remotely operable telescopes
- 2. Service mode capabilities
- 3. Robotic capabilities
- Networked autonomous operations

Pretoria 2018

Remote observing

- Have operated three telescopes simultaneously from Cape Town so far
- Remote obs is strongly encouraged
- Next step: from elsewhere
- Needs instrument selectors

1.9m

Remote observing

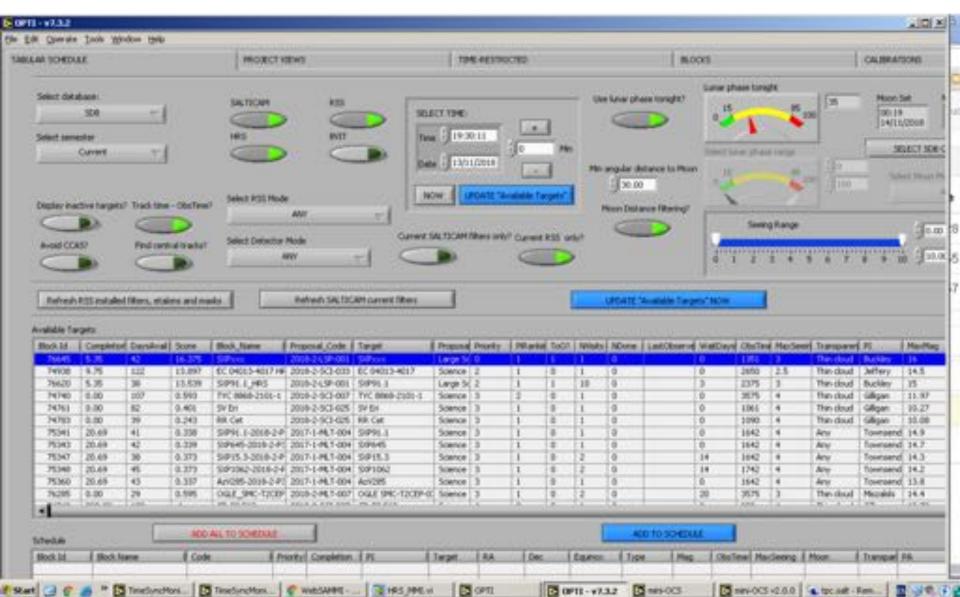
- Have operated three telescopes simultaneously from Cape ulletTown so far
- Remote obs is \bullet strongly encouraged
- Next step: from • elsewhere
- Needs instrument selectors

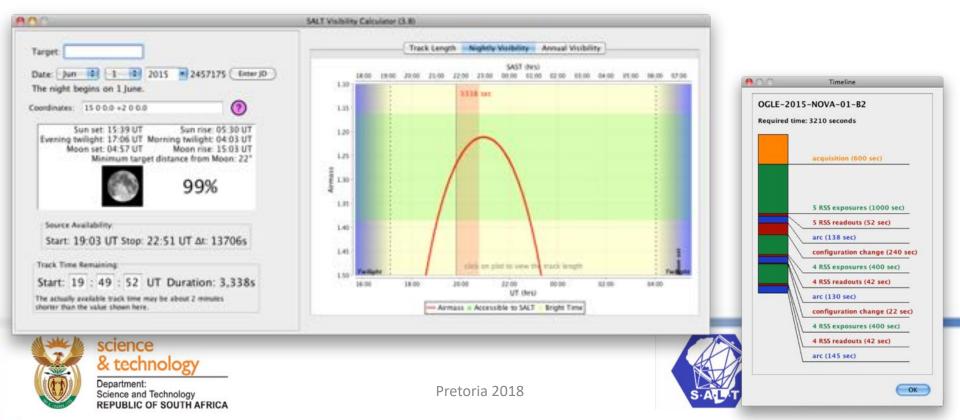
BLIC OF SOUTH AFRICA

Remote observing

- Have operated three telescopes simultaneously from Cape Town so far
- Remote obs is strongly encouraged
- Next step: from elsewhere
- Needs instrument selectors

1m Lesedi Pretoria 201


Service Mode Operations


Service Mode Operations

Service Mode Operations

- SALT has done this for a decade +
- *Next* on other telescopes individually; *Then* on a pool of telescopes
- Smart and flexible Observing queues; Simulations, data delivery

Robotic capabilities

Making Robotic telescopes is a large software effort. Existing robotic ones in boldface. [upcoming]

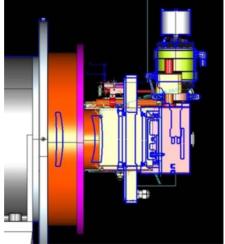
IRSF	Japanese 1.4 m IR imaging / polarimetry
KMTNet	Korean 1.6 m 2° field exoplanet search
MONET	German 1.2m planet search & teaching
Las Cumbres (LCO)	USA 3x 1m optical robotic
SOLARIS	Polish 2x 0.5 m exoplanet search
MASTER	Russian 2x 0.45 m transient search
[MeerLICHT	0.65 m shadows MeerKAT]
ASAS-SN	USA + International transient search
SuperWasp	UK exoplanet search
KELT-South	USA exoplanet search
SANSA	South African space debris, atmosphere
Bison	UK solar telescope
[ATLAS	USA 0.5 m near Earth asteroids and transient search]
PRIME	Japanese 1.8 m, wide field NIR imaging; HR spectograph

Make the whole mountain top a Giant Transient AI machine The 'Intelligent Observatory Project'

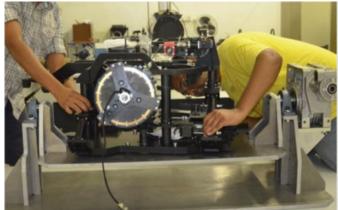
Networked autonomous observations

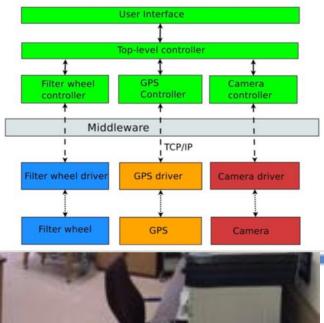
• The ultimate goal

• Making Robotic telescopes of different *sizes* and *types* and *modes* work together smartly is a *massive* software effort



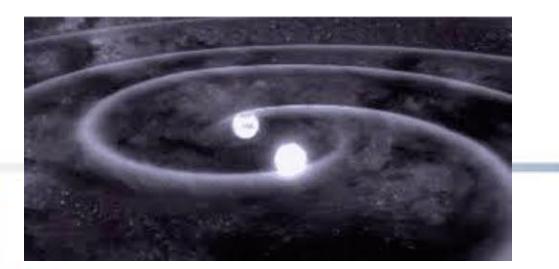
epartment: cience and Technology EPUBLIC OF SOUTH AFRICA




Pretoria 2018

SAAO Future: strong Instrumentation & Software Development

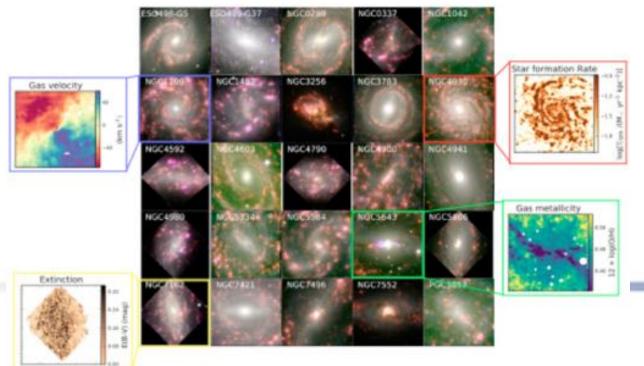
SCIENCE STRATEGY – FOCUS AREAS

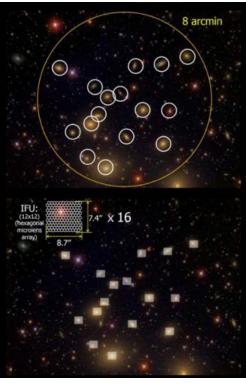


Pretoria 2018

I - Understanding fundamental physics and the nature of the universe Transient and time-domain astronomy

- Long history in SA astronomy
- New era beginning: MeerKAT/MeerLICHT, SKA, LSST, and LIGO / VIRGO


Cutting edge of fundamental astrophysics



II - Tracking the flow of matter from stars and galaxies to us Galaxy Evolution and The Baryon Cycle

• Spatially resolved spectroscopy. IFUs, ideally deployable. Will look for funding.

⁽DOTIFS: Chung, et al.)

III - Finding life in the universe Exo-planets

"Cosmology has driven the construction of big telescopes for the past 100 years. The search for life will drive the construction of big telescopes for the next 100 years" -*Chas Beichmann*

Alpha Centauri AB

Proxima Centauri

We cannot afford to NOT be part of this field !

And we already have an instrument for it

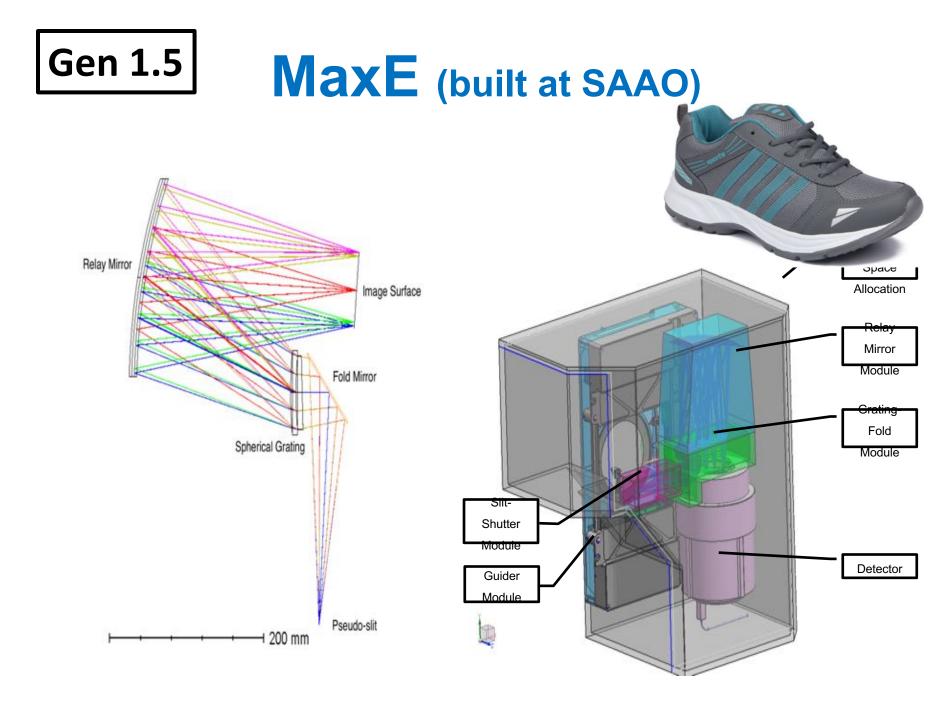
Proxima b

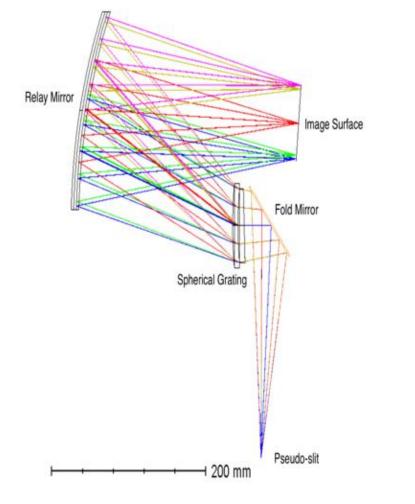
(image: ESO/M.Kornmesser)

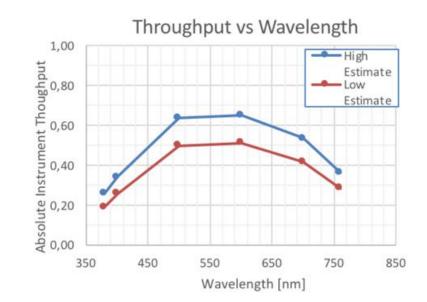
SALT Science Strategy – roadmap and lessons

- Generation 1.5 Project (1-3 yr)
 - Needed to rapidly start moving
 - Immediate funding sought successful
 - Will buy time to attract more interest for next level
- Generation 2.0 Project (5+ yr)
 - Funding model needs new investment, Partners and external

The SALT 1.5 Gen Project


- It is now funded by SARAO (SKA-SA)
- MaxE project
- HRS/High Stability:
 - LFC etc hardware, new lodine cell calibs
 - HS pipeline
- Rapid follow-up s/w development
- Secondments of SKA engineers and new hires
- Significant expansion of SAAO-based instrument development




MaxE (built at SAAO)

Main purpose:

Gen 1.5

Efficient transient followup, e.g. radio transients, efficient redshift surveys <22 mag

The SALT 2.0 Gen Project

Start with feasibility studies for 2.0

- Mini-trackers
- Booth et al. arXiv: 1808.00138 Large-format IFUs
- Other?
- (SPIE, 2018) Continue with AI Observatory
- Make instrumentations decisions
 - in a 1-2 yr timescale
- Attract new funding

Challenges

- Need solid strategy and plan and a unified community to convince funders. Keep process transparent.
- Need a long-term and comprehensive human resource planning
- Risks:
 - Human resources, tight timelines
 - Gen 2.0 funding may depend on success of Gen 1.5.

Rigorous project management and communication between astronomers and engineers required.

Pretoria 2018

Summary

SALT and SAAO goals aligned to be competitive in the 2020s

Transients and Time domain Galaxy evolution Exoplanets Instrumentation

A four-step process to an "Intelligent Observatory" focusing on building capability for

- Remote observing
- Service observing
- Robotic observing
- Fully autonomous multi-facility operations

SALT is working well. It is the most cost-effective large telescope science producer in the world.

